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Abstract 26 

Multiple tropical cyclones (TCs) could be present concurrently within one ocean basin, and 27 

these clusters can induce compound hazards within a short time window. Whilst the western 28 

North Pacific (WNP) has historically been home to most TC clusters, here we show that the 29 

North Atlantic (NA) has emerged as a TC cluster hotspot. Using observations and high-30 

resolution climate model simulations, we develop a probabilistic model assuming that TCs are 31 

mutually independent and occur randomly. Against this baseline, we identify outliers as 32 

clusters with dynamic interactions between TCs. We find that recent global warming pattern 33 

induces a hotspot shift in TC cluster from the WNP to the NA by modulating TC frequency 34 

and synoptic-scale wave activity. Our probabilistic modeling indicates a tenfold increase in the 35 

likelihood of TC cluster frequency in the NA surpassing that in the WNP, from 1.4 ± 0.4% to 36 

14.3 ± 1.2% over the past 46 years. 37 

 38 

Main 39 

On September 14, 2020, an extreme tropical cyclone (TC) cluster made headlines, with five 40 

TCs entrenched over the North Atlantic (NA). Hurricane Sally, one of the five, struck the 41 

contiguous U.S. with heavy rains across the Southeast (Fig. 1a and Supplementary Fig. 1)1. 42 

That year witnessed an unusually active Atlantic hurricane season, with nine storms forming 43 

in succession within 3 weeks (Fig. 1a). Such back-to-back TCs over the NA and their threat to 44 

the coastal U.S. have increased in recent decades2-4, aligning with significant increasing trends 45 

in both TC frequency and TC cluster frequency (Fig. 1b). Here, we define TC clusters as two 46 

or more TCs present simultaneously within the same basin5, 6. Historically, only 40% of TCs 47 

appeared alone, with majority of TCs coming in clusters6. Beyond the combined impacts of 48 

individual TCs, TC clusters can lead to disproportionate damage along coastal regions because 49 

infrastructure, communities, and restoration resources cannot bounce back from the damage by 50 

the preceding TC within a short period of time2, 7-9. In addition, dispatching limited emergency 51 

supplies to affected areas is rather difficult when multiple TCs impact different regions 52 

concurrently. For example, Hurricanes Harvey, Irma and Maria hit U.S. sequentially within 53 

one month in 2017. The Federal Emergency Management Agency failed to provide adequate 54 

support to hurricane victims in Puerto Rico when Maria struck because most rescue resources 55 
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were deployed for the responses to Hurricanes Harvey and Irma10. 56 

Although the extreme TC cluster in 2020 is relatively new to Atlantic coastlines, East and 57 

Southeast Asian coastal regions have long suffered from such temporally compound events. In 58 

late summer 2004, over the western North Pacific (WNP), nine disturbances intensified into 59 

TCs within 34 days11, 12, five of which made landfall in East Asia (Fig. 1c). Although the WNP 60 

has long been home to most TCs globally, recent decades have witnessed decreasing TC 61 

activity in this basin (Fig. 1d). Meanwhile, the TC cluster frequency in the NA has reached or 62 

even surpassed that of the WNP nine times since 2005 (red dots in Fig. 1b). This indicates that 63 

the NA is emerging as a hotspot for TC clusters, although the underlying mechanisms for this 64 

phenomenon remain unclear. 65 

The TC cluster frequency is not a linear function of TC frequency, as confirmed by the 66 

low Kendall rank correlation in Fig. 1d. Linking the contrasting trends in TC cluster frequency 67 

between the two basins to TC frequency trend is thus not straightforward. Previous studies have 68 

analyzed large-scale dynamic and thermodynamic conditions that are favorable for TC genesis 69 

to investigate TC cluster formation (e.g. ref.4-6,13). Also, recent studies have highlighted 70 

changes in TC climatology features, including frequency14, 15, seasonality16-18, and duration19, 71 

20 under anthropogenic warming. However, understanding how these TC climatology features 72 

besides the mechanisms at TC genesis influence TC cluster activity remains a challenge.  73 

Two possible conditions for TC cluster formation exist. First, TC genesis may involve 74 

physical processes related to pre-existing TC(s), thus contributing to TC cluster formation21, 22. 75 

TC-induced Rossby wave dispersion4, 5, 23, 24, synoptic-scale wave trains12, 25, 26 and other 76 

equatorial waves21, 27, 28 can lead to TC cluster formation, when subsequent TCs are pre-77 

conditioned by synoptic-scale cyclonic disturbances (hereafter, “dynamically connected 78 

events”). Second, the TCs in an TC cluster may be independently generated and happen to 79 

coincide. Several studies, some mutually conflicting, have tried to delineate the two types of 80 

TC cluster formation based on linear wave theory23, 24 or through case studies aided by 81 

numerical simulations29, 30. However, the relative importance of the two mechanisms for TC 82 

cluster formation remains unknown due to the lack of a robust theoretical framework and 83 

reliable diagnostic tools. 84 

The present study develops a probabilistic model to establish a baseline of independent 85 
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random TC occurrence and then identify dynamically connected TC clusters as outliers from 86 

the baseline. This novel method enables us to attribute TC cluster trends to recent La Niña-like 87 

global warming pattern. 88 

 89 

TC cluster climatology explained by a probabilistic model  90 

We develop a probabilistic framework for stochastic TC cluster simulations with TC 91 

parameters estimated from observations during 1979–2024 (Fig. 2; Methods). Probability 92 

density functions (PDFs) of TC genesis time are shown in Fig. 2a, b. The window of TC genesis 93 

over the NA is confined mainly to August–October, with a yearly peak in September, whereas 94 

the window is much wider for the WNP (Fig. 2a, b). Considering the relationship between TC 95 

occurrence time and lifespan, we then bin the genesis time into deciles and obtain the 96 

corresponding conditional PDF for TC lifespan for each decile of genesis time (Fig. 2c, d), 97 

which shows that NA TCs tend to last longer in the TC peak season, and thus TC clusters over 98 

the NA tend to concentrated due to the overlap of many long-lived TCs.  99 

According to this framework, we can estimate TC cluster frequency and their total 100 

occurrence days (denoted as ‘duration’) under the assumption that TCs independently and 101 

randomly occur (boxplots in Figs. 2e-h). The probabilistic model simulates the observed 102 

relationship between TC frequency and TC cluster activity quite well, with most observations 103 

(blue dots) falling within the boxplots. Both the TC cluster frequency and duration increase 104 

with TC frequency. 105 

We further couple the probabilistic model with seven high-resolution climate models 106 

capable of resolving TC activity31, 32 (CMIP6-HighResMIP; Methods; Extended Data Figs. 1 107 

and 2). Simulated TC cluster features from these full-physics high-resolution climate models 108 

align well with the estimation in the probabilistic modeling. Compared to linear regression 109 

results (red lines), the probabilistic simulations (boxplots) better capture the increasing 110 

tendency from zero at a relatively low TC frequency and the saturation behavior of TC cluster 111 

frequency at higher TC frequency. This saturation is intrinsic to the TC cluster definition, as a 112 

high TC frequency leads to persistent overlap among multiple TCs, causing a level off or even 113 

a decline in TC cluster frequency (Extended Data Fig. 2a). Thus, TC cluster duration may serve 114 

as a better indicator of potential TC cluster hazards under high TC frequency conditions.  115 
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To further validate the model across other basins, we perform probabilistic simulations in 116 

all six major TC genesis basins based on observations and the multi-model ensemble (MME) 117 

of the seven high-resolution climate models from CMIP6-HighResMIP (Extended Data Figs. 118 

3 and 4). The TC cluster frequency and duration are well distributed in the boxplots generated 119 

by Monte Carlo simulations across the six basins. This result indicates that the effect of TC 120 

climatology in frequency, lifespan, and genesis time predominantly govern TC cluster 121 

climatology, and the probabilistic model can be used to decompose the relative contributions 122 

of each individual parameter to TC cluster changes.  123 

 124 

Changing TC cluster activity and its drivers 125 

The probabilistic framework enables us to vary one parameter while keeping the others fixed 126 

to disentangle the individual contributions of changes in TC climatology features to changes in 127 

TC cluster activity (Methods). The quantitative contributions of each parameter in both 128 

observations and model projections are presented in Fig. 3a-h and Extended Data Tables 1 and 129 

2. During the recent 46 years, there has been an increase in TC cluster frequency by 2.3 events 130 

and an increase in duration by 7.8 days over the NA. Conversely, the frequency of TC clusters 131 

has decreased by 1.3 events, and the duration has decreased by 11.6 days over the WNP. The 132 

contrasting changes in TC cluster activity between the NA and the WNP are projected to 133 

continue through mid-21st century in the MME and individual model projections 134 

(Supplementary Table 1)6. These changes are well captured by the probabilistic modeling, 135 

except for a marked underestimation of the projected decrease in TC cluster frequency over the 136 

WNP (Fig. 3f), which explains only 54.7% of the TC cluster changes.  137 

The bias of the probabilistic model arises from both model uncertainty and systematic 138 

error, with the latter due to assuming TCs in clusters are generated independently. Intense TCs 139 

can induce alternating cyclonic and anti-cyclonic disturbances, as observed in 2004 over the 140 

WNP (Fig. 1b), leading to subsequent TCs in the wake of pre-existing TCs12. Such dynamic 141 

processes, involving enhanced synoptic wave trains, are favorable for TC cluster formation5, 22, 142 

24, 33, contributing to the systematic underestimation of TC cluster frequency in the probabilistic 143 

model (Fig. 3i-j). In contrast to TC cluster frequency, the bias distribution of TC cluster 144 

duration does not show a robust positive shift from zero in the mean value (Fig. 3k-l), likely 145 
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due to damping effects by the randomized TC lifespan. Especially, the bias distribution for TC 146 

cluster frequency over the WNP (Fig. 3j) exhibits statistically significant differences between 147 

the future (2020–2049) and historical (1981–2010) periods, as shown by Kolmogorov-Smirnov 148 

(K-S) test (p<<0.01), which mainly stems from a shift in the model’s mean bias. This 149 

significant shift can partially explain the probabilistic model’s failure to simulate the projected 150 

decrease in TC cluster frequency over the WNP (Fig. 3f). The underlying physical processes 151 

of this discrepancy are investigated in the following section.  152 

An increase in TC frequency can directly enhance TC cluster activity, as shown in Fig. 153 

2e-f. TC seasonality and lifespan influence TC cluster activity by modulating the genesis time 154 

interval and the likelihood of overlap between TCs, respectively. In general, TC frequency 155 

change is the primary contributor to TC cluster change, explaining 46.0% to 128.4% of TC 156 

cluster changes (Fig. 3a-h; Extended Data Table 1 and 2). Changes in TC lifespan and 157 

seasonality play a secondary role in regulating TC cluster activity over time. Observed changes 158 

in TC lifespan and seasonality lead to 8.5% reduction in TC cluster frequency and 17.5% 159 

reduction in TC cluster duration over the NA. These results may be due to the recent increase 160 

in short-lived TCs over the NA19. The probabilistic model explains a larger portion of the 161 

changes in TC cluster activities when focusing on relatively long-lived TCs (lasting ≥ 2 days; 162 

Extended Data Fig. 5).  163 

Note that the relationship between TC lifespan and genesis time may introduce additional 164 

complexity. However, our decomposition results show that the contributions of collaborate 165 

changes in TC lifespan and seasonality can be linearly reconstructed based on each parameter’s 166 

individual contribution (the last three columns in Extended Data Table 1 and 2), thereby 167 

enhancing our confidence in the results within the probabilistic framework. 168 

 169 

Identification of dynamically connected TC clusters 170 

In the Northern Hemisphere, TCs typically move northwestward due to climatological steering 171 

flow and the Beta effect34. If a TC is pre-conditioned by a Rossby wave train or other synoptic-172 

scale disturbance linked to a pre-existing TC, the genesis location of this new TC will most 173 

likely be in the southeastern quadrant relative to the pre-existing one because of the wave 174 

energy dispersion under easterly vertical wind shear4, 5, 24. We evaluate the likelihood of a new 175 
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TC formation southeast of the pre-existing TC against the random probabilistic framework to 176 

identify dynamically connected TC clusters.  177 

We begin by comparing the spatial distribution of newly formed TCs relative to pre-178 

existing TCs in the outlier group and the normal group (Methods). Outliers are defined as TC 179 

clusters with yearly frequency or duration (e.g., blue dots in Fig. 2e) that is above the 95th 180 

percentile of the Monte Carlo simulations (e.g., boxplots in Fig. 2e), while events positioned 181 

at the median value of the Monte Carlo simulations are categorized as the normal group. In 182 

both groups, the largest proportion of TCs is located in the southeastern quadrant of the pre-183 

existing TCs because of the general west-poleward propagation of TCs (Fig. 4a-d). Notably, 184 

however, a higher concentration of TCs is observed within this quadrant in the outlier groups 185 

in both the NA and WNP, with ratios increasing by 10.53% and 5.12%, respectively. These 186 

results suggest that the increased TC ratio in the wake of pre-existing TCs (that is, the 187 

southeastern quadrant) is likely associated with active dynamic connections between TCs. The 188 

enhanced activity of synoptic-scale wave trains may lead to an underestimation by the 189 

probabilistic model. Similar conclusions are drawn from observational data, except for results 190 

categorized by TC cluster duration over the WNP (Supplementary Fig. 2). 191 

To validate robustness of the contribution from dynamic connections, we gradually 192 

increase the threshold used to define outliers from the 0th to the 95th percentile (Methods), and 193 

investigated the changes in TC ratio in the southeastern quadrant (Fig. 4e, f). The ratios remain 194 

nearly unchanged at lower percentile thresholds and rapidly increase once the threshold reaches 195 

the 70th percentile. Ratios calculated based on data below the 50th percentile are significantly 196 

different from those in the second half, indicating a robust signal of dynamic connections. 197 

Previous attempts to detect dynamically connected events by comparing differences between 198 

TC clusters conditions with a climatological base state12, 33 and single TC conditions5, 24 suffer 199 

from an inaccurate baseline, while numerical case studies29, 30 are limited by insufficient sample 200 

sizes. Our study sidesteps these issues, presenting a more accurate baseline from the 201 

probabilistic model with adequate samples based on the MME with seven full-physics climate 202 

model simulations. Systematic deviations from this baseline arise from neglecting dynamically 203 

connected events. This approach novelly identifies the role of dynamic connections in TC 204 

clusters and their underlying physical drivers as demonstrated below. 205 
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 206 

Shifting hotspot driven by the surface warming pattern 207 

Local and remote SST forcings modulate synoptic-scale wave variability through large-scale 208 

circulations12, 35, 36(Methods). We investigate the SST patterns that favor dynamic connections 209 

between TCs (Fig. 5a-d; Methods). The enhanced dynamic connections between TCs over the 210 

WNP and NA are associated with El Niño and La Niña conditions, as evidenced by both climate 211 

model simulations and observations (Fig. 5a-d). Observational composites of synoptic-scale 212 

wave intensity for the corresponding groups of years (categorized into outlier years and normal 213 

years) support the linkage between dynamically connected TC clusters and enhanced synoptic 214 

disturbance activity (Fig. 5e, f; Supplementary Fig. 3 for validation in another reanalysis). 215 

Synoptic-scale wave activities strengthened over the broad subtropical NA, while synoptic-216 

scale wave intensity anomalies are characterized by a northwest-southeast oriented band in the 217 

WNP. In these regions with large zonal wind shear, synoptic-scale wave trains can develop by 218 

converting barotropic energy from the mean flow13. Similar patterns are observed when 219 

composites are grouped based on TC cluster duration (Supplementary Fig. 4).  220 

La Niña events can increase TC frequency in the NA by reducing the vertical wind shear37, 221 

38, whereas they primarily redistribute TC genesis locations in the WNP with a slight decrease 222 

in TC frequency39, 40. In addition to direct TC frequency changes, we show that the contrasting 223 

effects of ENSO on TC cluster frequency and duration over the two basins can be further 224 

reinforced by changes in dynamically connected events, especially for the WNP. The lower 225 

Kendall rank correlation between TC frequency and TC cluster frequency over the WNP, 226 

compared to the NA, also confirms the weaker influence of TC climatology features on TC 227 

cluster formation in this basin (Fig. 1c, d).  228 

Recent decades have witnessed a cooling trend over the tropical Pacific, known as La 229 

Niña–like warming41. While it is known that interannual ENSO causes seesaw changes in TC 230 

cluster activity between the two basins, the impacts of La Niña–like global warming pattern on 231 

TC cluster activity need to be further qualified. We take daily outputs of the highresSST-232 

present and highresSST-future simulations from MRI-AGCM3-2-H, whose results show good 233 

agreement with the MME in projected changes in TC clusters over the NA and WP 234 

(Supplementary Table 1). As the forced warming pattern between the two periods (1981–2010 235 
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and 2020–2049) after tropical mean warming rate subtracted is similar to the observed cooling 236 

in tropical Pacific (Extended Data Fig. 6), the differences in synoptic-scale wave intensity are 237 

taken as the responses to the recent La Niña–like global warming pattern (Fig. 5g, h). The 238 

synoptic-scale wave intensity is projected to increase across the NA (Fig. 5g), indicative of 239 

enhanced dynamic connections. Meanwhile, there is a significant decrease in synoptic-scale 240 

wave intensity over the mean flow confluence regions in the WNP (Fig. 5h), indicating that the 241 

La Niña–like global warming pattern will lead to suppression of the dynamically connected TC 242 

clusters over the WNP by reducing barotropic energy conversion. In addition, the widespread 243 

increase and decrease synoptic-scale wave intensity over the two basins agree well with TC 244 

track density changes (Fig. 5g, h), implying contrasting trends in TC frequency by changes in 245 

pre-TC synoptic-scale disturbances, which typically refer to as “TC Seeds”35, 42-44. 246 

Observational evidence confirms that the increase in TC frequency over the NA and decrease 247 

over WNP are associated with tropical Pacific cooling and warming elsewhere, including the 248 

positive Atlantic Multidecadal Oscillation (AMO)-like anomalies (Extended Data Fig. 7)45-48. 249 

These results, together with findings in Fig. 5e-h, suggest that long-term La Niña–like global 250 

warming pattern (Extended Data Fig. 6) contributes to contrasting changes in TC clusters over 251 

the NA and WNP in both observations and model projections through modulating TC 252 

frequency and synoptic-scale wave intensity. 253 

Above analysis shows that changes in synoptic-scale wave intensity driven by the recent 254 

La Niña–like global warming pattern can further increase (decrease) dynamically connected 255 

TC cluster activity over the NA (WNP), leading to a systematic bias in the probabilistic model 256 

(Fig. 3i-k). The significant decrease in model bias in projected TC cluster frequency in the 257 

WNP is closely related to the suppression of dynamically connected events under forced La 258 

Niña–like warming conditions (Fig. 3j). We highlight that the changes in synoptic-scale wave 259 

intensity driven by surface warming patterns, which regulate the dynamic connections between 260 

TCs, are a non-negligible factor for TC cluster changes. 261 

 262 

Discussion 263 

We have developed a probabilistic model to investigate changes in TC cluster activity over the 264 

NA and WNP, and disentangle the individual contributions of changes in TC climatology 265 
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features to TC cluster changes. This model is used as a baseline for random occurring 266 

independent TCs, against which we identify outliers as dynamically connected TC clusters. 267 

This approach sidesteps the uncertainties arising from limited sample sizes and establishes a 268 

more accurate baseline to identify dynamically connected TC clusters. We reveal that the NA 269 

has recently emerged as a TC cluster hotspot due primarily to the increased TC frequency and 270 

dynamically connected TC clusters driven by the recent La Niña–like global warming pattern. 271 

Whether this warming pattern is internally generated or externally forced remains an open 272 

question and warrants further investigations. Nonetheless, we find that the contrasting trends 273 

in TC cluster frequency between the NA and WNP remain robust even when the study period 274 

is extended to 1961 (Supplementary Fig. 5), implying the presence of a long-term change signal 275 

that goes beyond the impacts of inter-decadal variability. We perform a suite of high-resolution 276 

climate model experiments with different global warming patterns to test the hypothesis 277 

(Methods). When forced with the observed La Niña–like global warming pattern over 1960–278 

2014, the hotspot for TC clusters shifts from the WNP to the NA basin (Extended Data Fig.8). 279 

When forced with the projected El Niño–like warming, the TC cluster activities are suppressed 280 

in both basins, with a larger decrease occurring over the WNP. Future studies can further 281 

quantify the basin-dependent contributions of inter-decadal variability and long-term warming 282 

trends to the shifting TC cluster hotspot observed in recent decades. 283 

Estimated based on TC climatology feature changes, the possibility for TC cluster 284 

frequency over the NA to exceed that of the WNP has sharply increased, by as much as tenfold 285 

from 1.4 ± 0.4% to 14.3 ± 1.2% over the past 46 years (Methods). With the ongoing Pacific 286 

decadal cooling, this likelihood will further increase when changes in dynamically connected 287 

TC clusters are considered, highlighting a rapidly growing TC cluster threat to coastal NA. The 288 

probabilistic model well represents TC cluster climatology when extended to other TC basins, 289 

suggesting that the model is a useful framework to study the underlying dynamics and physical 290 

drivers of TC cluster activity on a global scale.  291 

Investigating systematic biases in probabilistic modeling based on seven full-physics 292 

high-resolution climate models, we robustly identify the role of enhanced synoptic-scale wave 293 

intensity in dynamically connected TC clusters. However, quantifying this contribution from 294 
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dynamically connected events remains a challenge and should be further pursued. Regardless, 295 

our research highlights the importance of TC clusters for hazard assessment, which often 296 

assumes independent TC events. Future research could explore more sophisticated modeling 297 

to explicitly capture dynamic interactions within TC clusters and investigate the landfall phase 298 

of TC clusters to support hazard assessment frameworks toward better representation of such 299 

temporally compound events. 300 
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Figure Legends 331 

Fig. 1 | Extreme TC cluster seasons and observed changes in TC frequency and TC cluster 332 

frequency. a, c, TC activity from August 31 to September 23, 2020, in the NA (a) and from 333 

August 4 to September 7, 2004, in the WNP (c). The histogram shows the daily TC counts 334 

within the period, and the map shows colored tracks for each TC. Hurricane Paulette (red line 335 

in a) regenerated into a TC after its extratropical transition, so we connected the two tracks 336 

with a dotted line. b, d, Time series of TC frequency (blue lines) and TC cluster frequency 337 

(orange lines) during 1979–2024 over the NA (b) and WNP (d). Kendall rank correlations (Tau) 338 

between TC frequency and TC cluster frequency are shown at the upper left. The linear trends 339 

of TC frequency (T1) and TC cluster frequency (T2) are plotted as dotted lines, with the 340 

associated 10-year trend values presented in the upper panel. Asterisks denote significance at 341 

the 95% confidence level based on the 1000-sample bootstrapping. Bold dots in b indicate that 342 

the frequency over the NA reaches or exceeds that over the WNP, occurring in five years for 343 

TC frequency and ten years for TC cluster frequency during 1979–2024. 344 

Fig. 2 | Probabilistic modeling of TC clusters. a, b, Histogram and PDF of TC genesis time 345 

in the NA (a) and WNP (b) derived from the 6-hourly best track dataset during 1979–2024. c, 346 

d, Joint distribution of TC genesis time and lifespan in the NA (c) and WNP (d). The average 347 

values of TC lifespan in every 10th percentile of TC genesis time are plotted as blue lines, and 348 

the shaded area indicates the range of the first quartile to the third quartile of the data. e, f, 349 

Relationship between yearly TC frequency and yearly TC cluster frequency in the NA (e) and 350 

WNP (f) in observations (blue dots) and 1000 Monte Carlo simulations (boxplots) during 351 

1979–2024. g, h, Same as in e, f but for TC cluster duration. Linear regressions between TC 352 

frequency and TC cluster frequency/duration in observations are shown as red lines, with 95% 353 

mailto:wen_zhou@fudan.edu.cn
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confidence intervals shaded based on the two tailed Student’s t-test. The function, R-squared 354 

(R2), and p-value (p<<0.01) of the models are presented at the upper left. In each boxplot, the 355 

box spans from the first quartile to the third quartile of the data, with a line marking the median. 356 

The whiskers extend from the box by 1.2× the interquartile range. 357 

Fig. 3 | Quantifying contributions of TC climatology changes to TC cluster changes in 358 

probabilistic modeling. a, b, Observed TC cluster frequency change (yellow histogram) and 359 

the changes simulated by probabilistic modeling (boxplots) between 1979–2001 and 2002–360 

2024 (the latter minus the former) in the NA (a) and WNP (b). Contributions from changes in 361 

TC climatology (‘All’) and individual parameters are simulated by varying the given 362 

parameter(s) while keeping the other(s) fixed (Methods). The boxplots show the averages of 363 

every 1000 Monte Carlo simulations (in total, 100 averages). The box spans from the first 364 

quartile to the third quartile of the data, with a line marking the median. The whiskers represent 365 

the range from the 5th to the 95th percentile of the data. Asterisks indicate that the mean value 366 

is significantly different from zero at the 95% confidence level based on the 1000-sample 367 

bootstrapping. c, d, Same as in a, b but for TC cluster duration with periods between 1979–368 

2001 and 2002–2024. e-f, Same as in a-d but for the MME of seven high-resolution climate 369 

models from CMIP6-HighResMIP with periods between 1981–2010 and 2020–2049. i, j, 370 

Deviations of average TC cluster frequency in probabilistic modeling from model outputs 371 

scaled by the standard deviation of residuals in corresponding linear regression models in the 372 

NA (i) and WNP (j) based on the MME. k, l, Same as in i, j but for TC cluster duration. The 373 

blue and red vertical dotted lines in i-l denote the mean bias of the probabilistic model during 374 

1981–2010 and 2020–2049, respectively. The p-value of the K-S test used to test the statistical 375 

difference between the bias distributions during the two periods is shown at the upper left of i-376 

l. 377 

Fig. 4 | Identification of dynamically connected TC clusters. a, b, Relative locations 378 

between pre-existing TCs (red star) and subsequent TCs (orange dots) at the cyclogenesis time 379 

of the subsequent TCs in the outlier group (left) and normal group (right) categorized by TC 380 

cluster frequency in the NA (a) and WNP (b) based on the MME of the highresSST-present 381 

simulation in seven high-resolution climate models from CMIP6-HighResMIP during 1950–382 
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2014. c, d, Same as in a,b but categorized by TC cluster duration. Percentages of subsequent 383 

TCs in each quadrant are indicated in the four corners. Considering wave energy dispersion for 384 

limited distance, our analysis focuses on a region extending 35° north and south in latitude and 385 

50° east and west in longitude from each pre-existing TC. e, f, Percentages of subsequent TCs 386 

located in the southeastern quadrant with different percentile thresholds to define the outlier 387 

group in the NA (e) and WNP (f), categorized by TC cluster frequency (red lines) and TC 388 

cluster duration (blue lines) (Methods). The average ratios between the two regimes, separated 389 

by a threshold of 50%, are plotted as dotted lines. The mean ratios between the two stages are 390 

statistically different with p-values less than 0.01 based on the 1000-sample bootstrapping. 391 

Fig. 5 | Patterns of SST and synoptic-scale wave activity that are favorable for 392 

dynamically connected TC clusters. a, b, Composite differences in SST (K) between TC 393 

cluster outlier group and normal group during 1950–2014 based on the MME of the 394 

highresSST-present simulations from CMIP6-HighResMIP. To isolate the dynamically 395 

connected TC clusters from randomly generated events, the normal and outlier groups are 396 

categorized by the 15th and 95th percentile of TC cluster frequency based on the probabilistic 397 

modeling in the NA (a) and WNP (b) (Methods). c, d, Same as in a, b but for observations 398 

with two groups divided by 50th percentile of TC cluster frequency during 1979–2024, to 399 

ensure a sufficient and comparable sample size for the two groups. e, f, Same as in c, d but for 400 

differences in synoptic-scale wave intensity (10-6 s-1) over the NA (e) and WNP (f). g, h, 401 

Impacts of long-term La Niña–like warming in the tropical Pacific on synoptic-scale wave 402 

activity (shading) and TC track density (contour) in the MRI-AGCM3-2-H experiments in the 403 

NA (g; [0.5, 1] red contours) and WNP (h; [-1.5, -0.5] blue contours). As the SST trend in the 404 

experiments between the periods 1981–2010 and 2020–2049 shows a cooling in the tropical 405 

Pacific (Extended Data Fig. 7), the differences in synoptic-scale wave intensity and TC track 406 

density are considered to be forced by La Niña–like global warming pattern. Averages of 407 

changes are shown for TC peak seasons in each basin (i.e., JAS for the NA and JASO for the 408 

WNP). In all panels, the dots indicate statistically significant differences at a 95% confidence 409 

interval based on the 1000-sample bootstrapping and false discovery rate test. 410 

 411 
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 523 

Methods 524 

Probabilistic TC cluster model 525 

To statistically analyze the climatology of TC clusters, we design a probabilistic TC cluster 526 

model based on a probabilistic TC occurrence model developed from refs 2, 3. Within this 527 

modeling framework, we do not account for the dynamic connections between TCs in a TC 528 

cluster, i.e., the occurrence of each TC is assumed to be independent of the occurrence of the 529 

others. Thus, the probabilistic model can serve as a TC cluster baseline contributed by 530 

randomly occurring independent TCs. The deviations from this baseline can be used to identify 531 
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the dynamically connected TC clusters. 532 

The model consists of three parameters, namely the annual basin-wide TC genesis 533 

frequency 𝑛, the date of TC genesis 𝑇, and the TC lifespan 𝐷. Here the genesis frequency 𝑛 534 

is a deterministic value either obtained from historical observations and simulations or 535 

prescribed as a given value, while the genesis date 𝑇 and the duration 𝐷 of each of the 𝑛 TCs 536 

are considered to be random variables. The genesis date and duration of TCs are shown to be 537 

correlated (Fig. 2c, d). However, limited historical observations and climate simulations 538 

prevent a robust estimation of the joint probability distribution of the two variables. Instead, 539 

we first obtain the kernel density estimations (KDE) of TC genesis time 𝑇. Then we bin every 540 

10th percentile of 𝑇 and obtain the conditional PDF of TC lifespan 𝐷 for each bin of 𝑇 using 541 

the KDE. The estimation is performed for historical observations in each basin, and for two 542 

periods (1950–2014 and 2015–2050) for each climate model simulation.  543 

For each year, with a fixed number of TCs, we apply the KDE of 𝑇 and the conditional 544 

KDE of 𝐷 to perform 1000 Monte Carlo simulations of the genesis date and duration of TCs 545 

in that year. In each Monte Carlo simulation, when two or more TCs co-exist simultaneously, 546 

we count it as one TC cluster event (frequency) and document the duration of the co-existence 547 

as the duration of the TC cluster (days). The simulated TC cluster frequency and duration of 548 

the 1000 Monte Carlo members are used to represent the climatology of the TC cluster.  549 

  550 

Decomposing the contribution to TC cluster changes from TC climatology features 551 

The abovementioned probabilistic model enables the flexibility to investigate the influence of 552 

the change in each individual feature of TC climatology on changes in the frequency and 553 

duration of TC cluster activity. We perform the sensitivity tests to decompose the impact from 554 

genesis frequency 𝑛 (‘Fre.’), date of TC genesis 𝑇 (‘Time’), and TC lifespan 𝐷  (‘Life.’) 555 

individually, as well as the joint impact from the changes in 𝑇 and	 𝐷 together (‘L+T’) on TC 556 

cluster changes. To study the individual influences in MME, we change one parameter at a 557 

time from its historical probability distribution during 1981–2010 to its future probability 558 

distribution during 2020–2049 estimated from climate model outputs, while keeping the other 559 

parameters the same as their historical values. We also investigate the individual influence of 560 

the changes in observations between 1979–2001 and 2002–2024. We repeat these sensitivity 561 
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experiments 100 times (that is, 100000 simulations in total) for every parameter to obtain 562 

statistically robust results. The differences between the estimated probability distributions of 563 

the simulated TC cluster frequency or duration and the historical probability distributions are 564 

used to represent the influence of the selected parameter(s). To estimate the change in the 565 

possibility of NA TC cluster frequency exceeding that of the WNP in observations, we compare 566 

the simulated TC cluster frequency over the NA and WNP in the two periods (1979–2001 and 567 

2002–2024) by the probabilistic model. The possibility is calculated as the percentage of 568 

instances where the TC cluster frequency over the NA surpasses that of the WNP. 569 

 570 

Observational data 571 

TC best-track data are obtained from the International Best Track Archive for Climate 572 

Stewardship49 (IBTrACS), which is compiled by six Regional Specialized Meteorological 573 

Centers and four Tropical Cyclone Warning Centers affiliated with the World Meteorological 574 

Organization. We use 6-hourly TC records for the period of 1979–2024 in the NA and WNP, 575 

as data quality before 1979 is poor due to the absence of routinely used geostationary satellites 576 

for monitoring. Thus, pre-1979 records should be interpreted with caution due to observational 577 

limitations. Nevertheless, extending the TC dataset to the 1950s will not alter the contrasting 578 

TC cluster trends between the NA and WNP (Supplementary Fig. 5). TC records from 1979 to 579 

2022 are also analyzed for the other four basins, the East Pacific (EP), North Indian (NI), South 580 

Indian (SI), and South Pacific (SP). Since our focus is on TC genesis and its persistence in a 581 

basin rather than its intensity — a parameter that suffers from significant uncertainty50 — our 582 

probabilistic model results are not sensitive to the dataset selection. We considered only TCs 583 

that reached at least tropical storm intensity (≥ 35 kt) during their lifetime. However, our 584 

conclusions remain unchanged when tropical depressions, extratropical cyclones, and 585 

subtropical storms are included (Supplementary Fig. 6). 586 

Monthly SST data are obtained from the Extended Reconstructed Sea Surface 587 

Temperature version 5 (ERSST.v5) 51 during 1950–2024. To calculate synoptic-scale wave 588 

intensity, we use 6-hourly zonal and meridional wind data at 850 hPa during 1979–2024, based 589 

on the fifth-generation atmospheric reanalysis from the European Centre for Medium-Range 590 

Weather Forecasts (ERA5) 52. We also analyze the results using daily reanalysis data from the 591 
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National Centers for Environmental Prediction–Department of Energy (NCEP/DOE 592 

Reanalysis II) during 1979–2020. Consistent with the findings from ERA5, the synoptic-scale 593 

wave intensity patterns exhibit a northwest-southeast oriented enhanced band over the WNP 594 

and a uniformly enhanced band over the NA in the NCEP/DOE dataset (Supplementary Fig. 595 

3). We exclude the linear trends of the data to eliminate the possible influence of global 596 

warming when investigating the favorable SST pattern for dynamically connected TC clusters. 597 

 598 

High-resolution climate simulations 599 

The CMIP6-HighResMIP initiative employs a multi-model framework to evaluate the regional 600 

impacts of climate change on TC activity53. In this study, we analyze Tier 1 and Tier 3 601 

simulations from seven high-resolution climate models: CNRM-CM6-1-HR54; EC-Earth3P-602 

HR55; HadGEM3-GC31-HM56; MRI-AGCM3-2-S57; MRI-AGCM3-2-H57; NICAM16-8S58; 603 

and NICAM16-7S58 (detailed in Supplementary Table 2). Limited in simulating observed 604 

warming pattern, coupled models are not included, which generally have poor performance in 605 

simulating the TC climatology and observed interannual variability of TC activity59, 60. Tier 1 606 

comprises atmosphere-only simulations forced by observed daily SST and sea ice 607 

concentration from HadISST2 spanning 1950–2014 (referred to as ‘highresSST-present’). Tier 608 

3 extends Tier 1 simulations through 2049 or 2050, with an option to continue to 2100 under 609 

scenario SSP585 (referred to as ‘highresSST-future’). For Tier 3, SST forcing incorporates the 610 

local warming rates derived from an ensemble mean of CMIP5 RCP8.5 simulations and 611 

includes interannual variability from observational data. Model resolutions are set at 50 km or 612 

finer to capture key statistics of TC climate and variability, such as genesis frequency, spatial 613 

distribution, and intensity32. Original TC tracks are identified by the TRACK algorithm in Ref. 614 

61, which detects TCs by tracking vorticity features on a common T63 spectral grid and 615 

accounting for warm-core criteria and storm lifespan. We focus on the first ensemble member 616 

from each model and compare the differences between 1981–2010 and 2020–2049 based on 617 

the MME results.  618 

Since HighResMIP simulations do not provide the SST variable online, we use variable 619 

surface air temperature (SAT) as a substitute6 to show long-term changes in SST patterns. To 620 

ensure data reliability, we assess the Niño3.4 index derived from both observed SST and SAT 621 
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in the highresSST-present simulation spanning 1979–2014 (Supplementary Fig. 7). The high 622 

correlation coefficient between the indices suggests that the SAT serves as a reliable proxy for 623 

SST. 624 

    The SST patterns in Fig. 5a, b are composited on a year-to-year timescale without any trend 625 

information, and therefore the intensified synoptic-scale wave in the dynamic connections 626 

cannot be directly attributed to the decadal SST warming pattern in the tropical Pacific 627 

(Extended Data Fig. 6). To confirm the effects of surface warming patterns on dynamically 628 

connected events, we use daily outputs from the MRI-AGCM3-2-H model to calculate the 629 

changes in synoptic-scale wave intensity. This model has good agreement with the MME in 630 

projected changes in the NA and WNP (Supplementary Table 1). In highresSST-future 631 

simulations, the model is forced by patterned warming from an ensemble mean of CMIP5 to 632 

2050 plus observed interannual variability. The differences between the periods 1981–2010 633 

and 2020–2049 are a La Niña–like warming pattern after tropical mean warming rate subtracted 634 

shown in Extended Data Fig. 6a, b. Therefore, the changes in synoptic-scale wave intensity 635 

between the two chosen periods can be considered as the responses to La Niña–like global 636 

warming patterns. 637 

 638 

Constraint detection for simulated TC tracks 639 

In this study, we define TC track density at a grid point with a 1° resolution as the number of 640 

TCs passing through a 15° longitude × 15° latitude area centered at that grid point. We select 641 

a 15°×15° box to capture synoptic waves (such as equatorial Rossby waves, mixed Rossby–642 

gravity waves, and easterly waves) that could trigger TC genesis62. 643 

The simulated global distribution of TC track density without constraints is shown in 644 

Supplementary Fig. 8a, which shows large overestimations, particularly in the WNP, NI, and 645 

Southern Hemisphere. These overestimations stem from uniform detection parameters and 646 

wind speed thresholds, leading to excessive TC frequency in very-high-resolution climate 647 

models6. To mitigate the bias and ensure equitable representation of each model in the MME, 648 

we implement additional constraints based on the TRACK algorithm, detailed in 649 

Supplementary Table 2. Due to the different parameterization schemes used in simulating the 650 

planetary boundary layer, some high-resolution models tend to reach very strong wind speed 651 
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artificially (such as NICAM16-8S and NICAM16-7S)63. We increase the wind speed 652 

thresholds in these models since our focus is TC frequency rather than intensity. Furthermore, 653 

we use a relatively weak constraint on lifespan to retain short-lived TCs, which might become 654 

more prevalent in the future19. Besides the traditional wind speed and duration criteria, we 655 

further filter out storms generated in the region where climatological SST is lower than 26℃, 656 

which are often misinterpreted as TCs in the TRACK algorithm64.  657 

    The bias of TC track density is largely reduced after the constraint detection methods are 658 

implemented, although an overabundance of TCs persists in the NI, likely due to the 659 

misidentification of monsoonal low-pressure systems65, 66 (Supplementary Fig. 8b, c). TC 660 

frequency across six basins agrees better with the observations, particularly for the WNP. 661 

Additionally, the standard deviations of TC frequency in the MME are reduced to levels 662 

comparable to the observations, indicative of the improvement of the constrained results 663 

(Supplementary Table 3). 664 

 665 

Outlier analysis 666 

The observed and simulated TC cluster frequencies and durations (blue dots in Fig. 2e-h) that 667 

exceed the 95th percentile of the respective Monte Carlo simulations (boxplots) are defined as 668 

outliers. To maintain an adequate sample size, events falling within the 5th to 95th percentiles 669 

of the simulations are included in the normal group for comparison with the outlier group, as 670 

depicted in Supplementary Fig. 2. In the Monte Carlo simulations based on climate model 671 

outputs, events positioned at the median value of the boxplots are considered as the normal 672 

group for comparison (Fig. 4a-d), ensuring a comparable sample size with outlier groups.  673 

We investigate the relative locations between pre-existing TCs and subsequent TCs within 674 

TC clusters and quantify the TC ratio in each quadrant. The wave energy dispersion in synoptic 675 

trains cannot extend beyond 5000 km due to its decaying feature and basin size67, and thus we 676 

only utilize the results within a 35-degree latitudinal and 50-degree longitudinal distance. The 677 

different ratios between the abovementioned outlier and normal groups are attributed not to the 678 

co-occurrence of independent stochastic arrivals but to dynamic connections between TCs, as 679 

evidenced by enhanced synoptic wave intensity (Fig. 5e, f). Furthermore, we modify the 680 

threshold for defining outliers, incrementally increasing from the 0th to the 95th percentile (in 681 
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5-percentile intervals) of the Monte Carlo simulations, and calculate the corresponding ratio of 682 

subsequent TCs located in the southeastern quadrant to confirm the role of dynamic interactions 683 

in increasing TC cluster activity. The sample sizes of the outlier group at each percentile 684 

threshold in the climate simulations are sufficiently large to yield robust conclusions 685 

(Supplementary Fig. 9). The conclusions remain unchanged when no constraints on distance 686 

are applied (Supplementary Fig. 10). 687 

To determine the underlying mechanisms for dynamically connected TC clusters, we 688 

composite the differences in SST and synoptic-scale wave intensity according to the deviations 689 

of the probabilistic model as follows. In the highresSST-present simulations (1950–2014), we 690 

classify the two groups as above the 95th percentile and below 15th percentile. In observations, 691 

we divide the years into two groups based on whether the TC cluster frequency reaches the 692 

50th percentile of the probabilistic simulations, to ensure a sufficient and comparable sample 693 

size for the two groups, and the results remain consistent when using TC cluster duration for 694 

classification (Supplementary Fig. 4). We compute the differences in SST and synoptic-scale 695 

wave intensity during the TC season from July to October (JASO) for the WNP68 and from 696 

August to October (ASO) for the NA69. 697 

 698 

Synoptic-scale wave activity 699 

The lower-tropospheric synoptic-scale wave train favors dynamically connected TCs12, 24. To 700 

quantify the synoptic-scale wave activity, we apply a Butterworth bandpass filter to daily zonal 701 

and meridional wind data at 850-hPa, with half power at 3 and 7 days (denoted as 𝑢! and 𝑣!, 702 

respectively). The standard deviation of the synoptic-scale relative vorticity ( 𝜁! ) is 703 

subsequently utilized as a metric for the intensity of the wave train. The synoptic-scale relative 704 

vorticity in the spherical coordinate system can be calculated as follows25, 70: 705 

 706 

𝜁! =
𝜕𝑣!

𝜕𝑥 −
𝜕𝑢!

𝜕𝑦 +
𝑢!

𝑎 tan𝜑 (1) 

 707 

where 𝜁! indicates the synoptic-scale relative vorticity (in 𝑠"#), 𝑎 is the radius of the Earth 708 

(in meters), and 𝜑 is the latitude (in radians). 709 
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To assess the intensity of the synoptic-scale wave train for a specific month, we compute 710 

the standard deviation of the synoptic-scale relative vorticity in that month in a given grid. This 711 

approach allows a detailed analysis of wave train intensity month by month.  712 

 713 

HIRAM experiments 714 

To confirm the effects of long-term warming patterns on TC clusters, we conducted numerical 715 

experiments using the high-resolution atmospheric general circulation model (HIRAM-C180) 716 

developed by the Geophysical Fluid Dynamics Laboratory (detailed in ref. 71). The model 717 

features a horizontal resolution of approximately 50 km with 32 vertical levels, making it 718 

comparable to the high-resolution climate models used in this study.  719 

We design three experiments, a control (CTRL) run and two future climate (GWLA and 720 

GWEL) runs, to elucidate the influence of different warming patterns. The CTRL run is forced 721 

by the observed monthly mean SST. The GWLA run is driven by a La Niña–like global 722 

warming pattern, represented by the SST in the CTRL run plus the observed SST trend over 723 

1960–2014. In the GWEL run, the model is forced by the SST from the CTRL run combined 724 

with an El Niño–like global warming pattern, derived from the MME of 12 CMIP5 models for 725 

the 2006–2099 period under the RCP8.5 scenario (similar to CMIP6-HighResMIP and refs. 72, 726 

73). A widely used TC detection algorithm (www.gfdl.noaa.gov/tstorms/) for global climate 727 

models is used to detect TCs in the simulations. The model simulations were conducted from 728 

January 1990 to December 2009 for each run. In our analysis, differences in TC cluster activity 729 

between the GWLA (GWEL) and CTRL runs, evaluated through 55-year resampling repeated 730 

1000 times, are taken as the response to the La Niña–like (El Niño–like) global warming pattern 731 

(Extended Data Fig. 8). 732 

It is important to note that inter-decadal variability in SST may influence the results. To 733 

minimize this impact, we selected the period 1960–2014, during which the positive and 734 

negative phases of the AMO and Interdecadal Pacific Oscillation (IPO) are largely offset73. 735 

Nevertheless, we found that the La Niña–like global warming pattern persists regardless of the 736 

chosen periods (Supplementary Fig. 11), consistent with ref. 41. 737 

 738 

Statistical significance test 739 

http://www.gfdl.noaa.gov/tstorms/
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In our study, all significance tests are conducted at the 95% confidence level. Kendall rank 740 

correlation is used to evaluate the correspondence of TC cluster frequency and TC frequency, 741 

which measures the similarity of the ordering of the two series when ranked by each of the 742 

quantities74. Before coupling the probabilistic model with observations and model simulations, 743 

we evaluate the independence of TC frequency, duration, and genesis time distributions using 744 

the Chi-squared test. We use the deviations of the probabilistic model from model outputs 745 

scaled by the standard deviations of residuals in the linear regression model in TC cluster 746 

frequency/duration to represent normalized bias distribution. This approach enables inter-basin 747 

comparisons of bias distributions in the probabilistic modeling. To determine the changes in 748 

bias distribution between the two periods in the probabilistic model, we conduct a K-S test. A 749 

1000-sample bootstrapping approach is applied to evaluate the linear trends in both TC 750 

frequency and TC cluster frequency, as well as the differences in TC ratio, SST, and synoptic 751 

wave intensity between two given periods75. The false discovery rate test is also used to assess 752 

the significance of grid points in the spatial pattern76, 77. The uncertainty of the linear regression 753 

model is represented by the standard deviation. 754 

 755 

Data Availability 756 

The data that support the findings of this study are all openly available online. The best-track 757 

TC data with 6 h temporal resolution are available at 758 

https://www.ncei.noaa.gov/products/international-best-track-archive. The CMIP6-759 

HighResMIP data are openly available at 760 

https://data.ceda.ac.uk/badc/cmip6/data/CMIP6/HighResMIP. The daily wind fields at 761 

pressure levels from MRI-AGCM3-2-H in CMIP6-HighResMIP can be downloaded at 762 

https://aims2.llnl.gov/search/cmip6/. The tropical storm tracks calculated by the TRACK 763 

algorithm can be downloaded at 764 

https://catalogue.ceda.ac.uk/uuid/0b42715a7a804290afa9b7e31f5d7753. Hourly reanalysis 765 

data on pressure levels from the ERA5 at 766 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-767 

levels?tab=overview, and from the NCEP/DOE Reanalysis II at 768 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. ERSST.v5 data from NOAA are 769 

https://www.ncei.noaa.gov/products/international-best-track-archive
https://data.ceda.ac.uk/badc/cmip6/data/CMIP6/HighResMIP
https://aims2.llnl.gov/search/cmip6/
https://catalogue.ceda.ac.uk/uuid/0b42715a7a804290afa9b7e31f5d7753
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
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available at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. All the map figures 770 

(Fig. 5 and Extended Data Figs. 6, 7 and Supplementary Figs. 3, 4, 8, and 11) were generated 771 

using Python Cartopy v.0.22.0 (https://doi.org/10.5281/zenodo.1182735) (ref. 78). The data 772 

necessary to reproduce the main results are provided at 773 

https://doi.org/10.5281/zenodo.15383539 (ref. 79). 774 

 775 

Code Availability 776 

Analysis and figure generation were performed using Python (version 3.9.7). The code and 777 

scripts used to calculate the tropical cyclone clusters, perform the probabilistic modeling, and 778 

generate the figures in the main text are available at Code Ocean 779 

(https://doi.org/10.24433/CO.0176970.v2) (ref. 80). 780 
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